UNSW Syndey team develops hydrogen-diesel dual fuel system; 90% H2, more than 85% reduction in CO2 - Green Car Congress

2022-10-08 12:51:37 By : Mr. Andy Yang

Engineers from UNSW Sydney (Australia) have successfully converted a diesel engine to run as a dual-fuel hydrogen-diesel engine, reducing CO2 emissions by more than 85% compared to conventional diesel. The team, led by Professor Shawn Kook from the School of Mechanical and Manufacturing Engineering, spent around 18 months developing the Hydrogen-Diesel Direct Injection Dual-Fuel System that allows existing diesel engines to run using 90% hydrogen as fuel.

The researchers say that any diesel engine used in trucks and power equipment in the transportation, agriculture and mining industries could ultimately be retrofitted to the new hybrid system in just a couple of months.

In a paper published in the International Journal of Hydrogen Energy, Prof. Kook’s team shows that using their patented hydrogen injection system reduces CO2 emissions to just 90 g/kWh—85.9% below the amount produced by the diesel powered engine.

High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing.

At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.—Liu et al.

The Hydrogen-Diesel Direct Injection Dual-Fuel System features independent control of hydrogen direct injection timing, as well as diesel injection timing, enabling full control of combustion modes: premixed or mixing-controlled hydrogen combustion. Image from Prof. Shawn Kook

The UNSW team’s solution to the problem maintains the original diesel injection into the engine, but adds a hydrogen fuel injection directly into the cylinder.

The new Hydrogen-Diesel Direct Injection Dual-Fuel System does not require extremely high purity hydrogen which must be used in alternative hydrogen fuel cell systems and is more expensive to produce.

The research team hope to be able to commercialize the new system in the next 12 to 24 months and is keen to consult with prospective investors. The researchers say the most immediate potential use for the new technology is in industrial locations where permanent hydrogen fuel supply lines are already in place.

That includes mining sites, where studies have shown that about 30% of greenhouse-gas emissions are caused by the use of diesel engines, largely in mining vehicles and power generators. The Australian market for diesel-only power generators is currently estimated to be worth around $765 million.

Xinyu Liu, Gabrielle Seberry, Sanghoon Kook, Qing Nian Chan, Evatt R. Hawkes (2022) “Direct injection of hydrogen main fuel and diesel pilot fuel in a retrofitted single-cylinder compression ignition engine,” International Journal of Hydrogen Energy, doi: 10.1016/j.ijhydene.2022.08.149

Posted on 08 October 2022 in Australia, Conversions, Diesel, Engines, Fuels, Hydrogen, Market Background, Mining | Permalink | Comments (1)

Sounds good - I wish them well. Australia could be up to their necks in H2 if some of their plans come off. Need to keep an eye on the NOx emissions, however. Might be able to convert diesel trains with this (as well as trucks).

Posted by: mahonj | 08 October 2022 at 02:20 AM

This is only a preview. Your comment has not yet been posted.

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

(You can use HTML tags like <b> <i> and <ul> to style your text.)

(Name is required. Email address will not be displayed with the comment.)

Name is required to post a comment

Please enter a valid email address

This weblog only allows comments from registered users. To comment, please enable JavaScript so you can sign in.